Source code for
vl_demo_gmm_3d.m
This file is located in the toolbox/demo folder in VLFeat package.
function vl_demo_gmm_3d % VL_DEMO_GMM_3D Show how to initialize GMM learning with a custom set of modes %% Initialize points clustered in 3D numClusters = 5 ; dimension = 3 ; cc = hsv(numClusters) ; randn('state',0) ; X = [] ; for i=1:numClusters delta = 5*[i;0;0] ; %num = ceil(1000 / i) ; num = 500 ; s = diag([1,i, 1]) ; X = [X, bsxfun(@plus, s*randn(dimension, num), delta)] ; end %% Cluster using KMeans (ANN algorithm) elapsedKMEANS = tic ; vl_twister('state',0) ; [initMeans, assignments] = vl_kmeans(X, numClusters, ... 'Verbose', ... 'Algorithm', 'ann', ... 'MaxNumIterations', 10, ... 'Distance', 'l2', ... 'NumTrees', 3, ... 'MaxNumComparisons', 10); elapsedKMEANS = toc(elapsedKMEANS) ; fprintf('\n ---------- \n KMeans time - %f \n ---------- \n\n',elapsedKMEANS) ; %% Create initial GMM modes from KMeans clusters initSigmas = zeros(dimension,numClusters); initWeights = zeros(1,numClusters); figure(1) ; clf ; subplot(1,2,1) ; hold on ; for i=1:numClusters Xk = X(:,assignments==i) ; initWeights(i) = size(Xk,2) / numClusters ; plot3(Xk(1,:),Xk(2,:),Xk(3,:),'.','color',cc(i,:)) ; if size(Xk,1) == 0 || size(Xk,2) == 0 initSigmas(:,i) = diag(cov(X')); else initSigmas(:,i) = diag(cov(Xk')); end end axis equal ; xlabel('x') ; ylabel('y') ; zlabel('z') ; title('GMM: KMeans intialization') ; %% Fit a GMM model to the maximum likelihood elapsedGMM = tic ; [means,sigmas,weights,ll,posteriors] = vl_gmm(X, numClusters, ... 'Initialization','custom', ... 'InitMeans',initMeans, ... 'InitCovariances',initSigmas, ... 'InitPriors',initWeights, ... 'Verbose', ... 'MaxNumIterations', 100) ; elapsedGMM = toc(elapsedGMM); fprintf('\n ---------- \n GMM time - %f \n ---------- \n',elapsedGMM) ; subplot(1,2,2) ; hold on ; [~,idx] = max(posteriors,[],1); for i=1:numClusters plot3(X(1,idx == i),X(2,idx == i),X(3,idx == i),'.','color',cc(i,:)) ; end axis equal ; xlabel('x') ; ylabel('y') ; zlabel('z') ; title('GMM: Estimated Gaussian mixture') ;