Table of Contents
VLFeat includes fast SVM solvers,
SGC [1] and (S)DCA [2], both
implemented in vl_svmtrain. The function also implements
features, like Homogeneous kernel map expansion and SVM online
statistics. (S)DCA can also be used with different loss functions.
Support vector machine
A simple example on how to use vl_svmtrain is
presented below. Let's first load and plot the training data:
% Load training data X and their labels y vl_setup demo % to load the demo data load('vl_demo_svm_data.mat'); Xp = X(:,y==1); Xn = X(:,y==-1); figure plot(Xn(1,:),Xn(2,:),'*r') hold on plot(Xp(1,:),Xp(2,:),'*b') axis equal ;
Now we have a plot of the tutorial training data:
Now we will set the learning parameters:
lambda = 0.01 ; % Regularization parameter maxIter = 1000 ; % Maximum number of iterations
Learning a linear classifier can be easily done with the following 1 line of code:
[w b info] = vl_svmtrain(X, y, lambda, 'MaxNumIterations', maxIter)
Now we can plot the output model over the training data.
% Visualisation eq = [num2str(w(1)) '*x+' num2str(w(2)) '*y+' num2str(b)]; line = ezplot(eq, [-0.9 0.9 -0.9 0.9]); set(line, 'Color', [0 0.8 0],'linewidth', 2);
The result is plotted in the following figure.
The output info is a struct containing some
statistic on the learned SVM:
info = solver: 'sdca' lambda: 0.0100 biasMultiplier: 1 bias: 0.0657 objective: 0.2105 regularizer: 0.0726 loss: 0.1379 dualObjective: 0.2016 dualLoss: 0.2742 dualityGap: 0.0088 iteration: 525 epoch: 3 elapsedTime: 0.0300
It is also possible to use under some assumptions [3] a homogeneous kernel map expanded online inside the solver. This can be done with the following commands:
% create a structure with kernel map parameters hom.kernel = 'KChi2'; hom.order = 2; % create the dataset structure dataset = vl_svmdataset(X, 'homkermap', hom); % learn the SVM with online kernel map expansion using the dataset structure [w b info] = vl_svmtrain(dataset, y, lambda, 'MaxNumIterations', maxIter)
The above code creates a training set without applying any homogeneous kernel map to the data. When the solver is called it will expand each data point with a Chi Squared kernel of period 2.
Diagnostics
VLFeat allows to get statistics during the training process. It is
sufficient to pass a function handle to the solver. The function
will be then called every DiagnosticFrequency time.
(S)DCA diagnostics also provides the duality gap value (the difference between primal and dual energy), which is the upper bound of the primal task sub-optimality.
% Diagnostic function function diagnostics(svm) energy = [energy [svm.objective ; svm.dualObjective ; svm.dualityGap ] ] ; end % Training the SVM energy = [] ; [w b info] = vl_svmtrain(X, y, lambda,... 'MaxNumIterations',maxIter,... 'DiagnosticFunction',@diagnostics,... 'DiagnosticFrequency',1)
The objective values for the past iterations are kept in the
matrix energy. Now we can plot the objective values from the learning process.
figure hold on plot(energy(1,:),'--b') ; plot(energy(2,:),'-.g') ; plot(energy(3,:),'r') ; legend('Primal objective','Dual objective','Duality gap') xlabel('Diagnostics iteration') ylabel('Energy')
References
- [1] Y. Singer and N. Srebro. Pegasos: Primal estimated sub-gradient solver for SVM. In Proc. ICML, 2007.
- [2] S. Shalev-Schwartz and T. Zhang. Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization. 2013.
- [3] A. Vedaldi and A. Zisserman. Efficient additive kernels via explicit feature maps. In PAMI, 2011.