Source code for
vl_demo_kmeans_ann_speed.m
This file is located in the toolbox/demo folder in VLFeat package.
% VL_DEMO_KMEANS_ANN_SPEED Compares Lloyd's, Elkan, and ANN k-means numCenters = 200 ; numTrials = 3 ; maxNumIterations = 10 ; initialization = 'randsel' ; %initialization = 'plusplus'; distance = 'l2' ; %% Create an example dataset dimension = 32 ; numData = 50000 ; X = randn(dimension,numData); %% Run various k-means algorithms on the data algorithms = {'Lloyd','Elkan','ANN 1/4','ANN 1/10','ANN 1/50' } ; options = {{'Algorithm', 'Lloyd'}, ... {'Algorithm', 'Elkan'}, ... {'Algorithm', 'ANN', 'MaxNumComparisons', ceil(numCenters / 4)}, ... {'Algorithm', 'ANN', 'MaxNumComparisons', ceil(numCenters / 10)}, ... {'Algorithm', 'ANN', 'MaxNumComparisons', ceil(numCenters / 50)}} ; numCpus = [1 0] ; clear time energy ; for n = 1:2 for a = 1:numel(algorithms) for t = 1:numTrials vl_threads(numCpus(n)) ; start = tic ; [C, A, E] = vl_kmeans(X, ... numCenters, 'Verbose', ... 'Distance', distance, ... 'MaxNumIterations', maxNumIterations, ... options{a}{:}) ; if vl_isoctave() time(t,a,n) = (tic() - start) / 1e6 ; else time(t,a,n) = toc(start) ; end energy(t,a,n) = E ; end end end % average over tirals time = squeeze(mean(time,1)) ; energy = squeeze(mean(energy,1)) ; figure(1) ; clf ; for n=1:2 if n == 1 str = 'Serial' ; else str = 'Parallel' ; end subplot(3,2,(n-1)+1) ; bar(time(:,n)) ; set(gca,'XTickLabel',algorithms); set(gca,'FontSize',8), xlabel('Algorithm'); ylabel('Time [s]'); title(str) ; subplot(3,2,(n-1)+3) ; bar(energy(:,n)); set(gca,'XTickLabel',algorithms); set(gca,'FontSize',8), xlabel('Algorithm'); ylabel('Energy'); title(str) ; subplot(3,2,(n-1)+5) ; bar(time(1,1)./time(:,n)) ; set(gca,'XTickLabel',algorithms); set(gca,'FontSize',8), xlabel('Algorithm'); ylabel('Speedup'); title(str) ; end vl_demo_print('kmeans_speed',1);