Source code for
vl_demo_kdtree_ann.m
This file is located in the toolbox/demo folder in VLFeat package.
function vl_demo_kdtree_ann % VL_DEMO_KDTREE % Demonstrates the use of a kd-tree for approximate nearest neighbor % (ANN) queries. % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). randn('state',0) ; rand('state',0) ; % Generate some 2D data and a query point X = rand(2, 100) ; Q = rand(2,1) ; % Buld a kd-tree kdtree = vl_kdtreebuild(X) ; % Query with increasing accuracy maxNumComparisonRange = [1 10 20 30] ; for t = [1 2 3 4] figure(t) ; clf ; vl_plotframe(X, 'ro') ; hold on ; xl = [.2, .8] ; yl = [.1, .7] ; xlim(xl) ; ylim(yl) ; % vl_demo_kdtree_plot(kdtree, 1, xl, yl) ; [i, d] = vl_kdtreequery (kdtree, X, Q, ... 'NumNeighbors', 10, ... 'MaxComparisons', maxNumComparisonRange(t), ... 'Verbose') ; vl_plotframe(Q,'b*','markersize',10) ; for k=1:length(i) if i(k) == 0, continue ; end vl_plotframe([Q ; sqrt(d(k))],'b-','linewidth',1) ; vl_plotframe(X(:, i(k)), 'bx','markersize',15) ; end title(sprintf('10 ANNs with at most %d comparisions', maxNumComparisonRange(t))) ; axis square ; set(gca,'xtick',[],'ytick',[]) ; vl_demo_print(t, sprintf('kdtree_ann_%d', t)) ; end